

Integration Philosophy

Disciplines Workflows

What is the goal?

To create a unified, blended understanding of the reservoir in order to realize its maximum economic potential for the client What is our approach?

- We develop close interactions between different disciplines, data types and concepts
- We pay close attention to details, and do not limit integration to a collection of software applications used sequentially

Workflow Task

iReservoir's integrated technology

- Commercial applications
 - * Petrophysics
 - Geologic data base, correlation, and mapping; statistical analysis
 - Seismic interpretation, AVO, and inversion
 - * Geomodeling
 - * Reservoir simulation
- In-house scripts based on commercial applications
- Proprietary software to complement commercial applications
 - * Nonlinear petrophysical modeling
 - Probabilistic seismic attribute analysis
- Applications/workflows developed "on the fly" jointly with the client to adapt/solve specific project need

Petrophysics Workflow

What is available?

Project Question

Database review

Is data usable? Quality control

Are logs consistent? Log normalization

Conventional Analysis vs. Model Petrophysical analysis

What is the net pay? **Net Pay Identification**

Does it matter? Facies-Units or Flow-Units

Additional engineering needs? BVW, contacts, Phi-K

What does the seismic tell us? Rock physics/Petrophysics relations

What makes iReservoir's integration different?

1 of 2

- Specializes in the core disciplines needed to perform most reservoir integrated studies: geology, petrophysics, geophysics, geomodeling, and reservoir engineering
- Specializes in non-sequential integration of knowledge, data and software designed to enhance value
- Uses conventional commercial software, as well as proprietary applications tailored to solve specific problems of the client
- Emphasizes feasibility, quality control and calibration of results with hard data
- Focuses on providing solutions for the reservoir rather than simply applying technologies

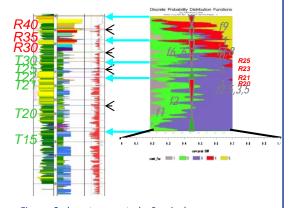


Figure: Carbonate case study: San Andres Formation, Seminole Field

Geology Workflow

Project Question

Are data/tops usable?

What is available?

Stealing faults and vertical

barriers?

Structural and fault maps?

Hierarchy of Surfaces established?

Flow units, barriers, and baffles?

Facies ready for geomodel?

Aspect ratios and directionality?

Workflow Task

Database review

Quality control

Validation with dynamic data

Seismic/log interpretation

1-D Stratigraphic & facies analysis

2-D correlation & facies analysis

Facies proportion curves

Depositional model

Disciplines Workflows (cont.)

Geophysics Workflow

Project Question

Pre-stack, post-stack data

Is it ready to use

What minerals and fluids?

What does seismic tell us?

Faults and horizons?

Rock types, facies, faults?

Do we need to integrate in depth?

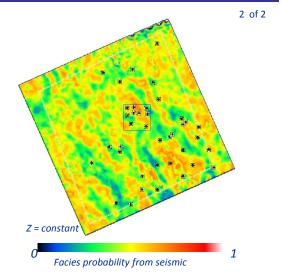
Can it help to distribute properties?

Workflow Task

Data review

Quality control

Petrophysical analysis


Rock physics checks

Structural Interpretation

Attribute extraction

Depth conversion

Constrain geomodeling

Geomodeling Workflow

Project Question

What is available?

Are data/tops consistent?

What is required model resolution?

Depositional environment variables?

Are faceis proportions available?

Seismic-log calibration available?

Porosity and permeability relationship?

Net pay cutoff?

Reservoir simulation grid requirements?

Workflow Task

Database review

Horizon/faults surfaces generation

3D stratigraphic grid construction

Spatial statistics analysis

Facies distribution

Distribution of seis/petro

relationships

Permeability distribution

Net-to-gross estimation

Reservoir grid upscaling

Engineering Workflow (simulation emphasis)

Project Question

Fluid types?

SCAL data (by Facies)?

Wells test (PTT, tracer, RFT, PLT)?

Well completions, rates & pressures?

Fluid contacts, initial saturation?

Effective Kv, faults sealing?

Aquifer size and strength?

History Match?

Forecasts (uncertainty, optimization)

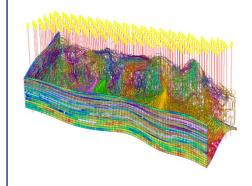
Workflow Task

PVT fluid models for simulation

Kr, Pc, compaction behavior

Calibration for geomodel,/ simulation

Analyze, QC, preparation for simulation


Initial conditions, QC with logs

Test impact on simulations

Test impacts on simulations

Match dynamic data

Simulation sensitivities, economics

