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Engineering and Simulation

Objective

— Use integrated approach to create a 3D dynamic
simulation model based on detailed static geologic
and petrophysical models.

— Incorporate and calibrate hydraulic fracture properties
at each well to approximate initial productivity.

— Simulate long-term dynamic flow to investigate
volume influence of wells and the impact of geologic
uncertainty on early and long-time performance.
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Simulation Workflow

Geologic Model Choices
— Distribution methods, (e.g. Objects), seismic constraints

« Petrophysical Constraints
— net pay, BVW, permeability, overburden impacts

* [nitial Pressure Distribution
— representation of overpressure

« Hydraulic Fracture Representation
— Propped length, height, orientation and conductivity

« Dynamic Model Calibration
* Forecasts of Long-Term Performance

« Other Considerations / Uncertainty
— Natural fractures, directional permeability, water production
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Model Area and Grid Size
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Orientation is N60W. Data from oter areas

would suggest N45W.

71x72x 722 (761,222 active cells)
DX = DY =55’ or 0.069 acre/cell
Avg. DZ = 2.8 ft

Model area: ~190 acres
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1) Geologic Model Choices

SIS-Based Object-Based Well Litho VPC
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2) Petrophysical Constraints

Geomodel Provides:

* Porosity

* Permeability (air)
*Facies Indicators

« Stratigraphic Regions
*NTG (after upscaling)

« only channel bars,
point bars and
marine sand
considered as pay Iin
this illustration 0.00 0.25 050 0.75 1.00

Example NTG
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Petrophysical Calibration
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3) Pressure Initialization

Pressure Cross-Section

Initial Pressure (all Cells)
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Initial Pressure, Overburden and Permeability Correction
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Initial Gas-In-Place, MSCF/Acre

Mo
Area, acres 183
Net Pay Thickness, ft 570
Avg. Sg*Poro, % 4.97%
Net-Phih*Sg, ft 28.31
Avg. kx(air), md 0.0101
Avg. kx(mod), md 0.0011

Avg BG, RB/MSCF 0.9475

GIP, BCF 42
BCF/640 acres 148
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4) Hydraulic Fracture Representation

* Propped Length and Height
« Conductivity
 QOrientation

An “Ideal”’ Frac?

1,500,000 Ibs of sands—>
~15,000 ft3 >
Height=2000ft
Length=400ft

Width=0.225inches
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Piceance Microseismic Example

1000.0 ft

Gibson Gulch areal view
of microseimic events

Gibson Gulch cross view
of microseimic events

L. Weijers, Y. Kama, J. Shemeta, and S. Cumella:

“Bigger is Better — Hydraulic Fracturing in the Williams Fork Formation in the
Piceance Basin” Search and Discovery Article #110092, July 25, 2009, Adapted
from extended abstract prepared for oral presentation at the AAPG Annual
Convention, Denver, CO June 7-10, 2009

| I Induced Tensile Fracture
I Breakout

Mamm Creek breakout orientation approximately N60OW
Courtesy Sait Baytok

Approx. dimension for
propped fracture in models.

SPE 116304: “Effective propped half-lengths are significantly
shorter than measured hydraulic half-lengths.”

Figure 1. Gibson Gulch fracture mapping project setup.

Note this data shows approximate N45W
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7/ Reservoir.com
e-solution for global energy @z <~ sm



Model Area and Hydraulic Fracture Representation

Area Borehole Breakout (Sait Baytok)
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5) Calibration of Dynamic Model

» Well performance comparison
—  Model controlled by gas rate
— Modeled pressures are compared with measurements
—  Two well groups based on hydraulic fracturing performance

—  The hydraulic fractures properties were independently
adjusted for history matching

—  For five deeper wells in the model (deeper than modeled
area) assume 10% gas came from the deeper zone

—  No “clean-up” / workover time is simulated

—  Water remains immobile



Calibrating to Rate Performance

Early time behavior is dominated

by hydraulic fracture properties, Late time near-well pressure affected by

go1p20 clean-up, etc sand connectivity and properties. If too
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Example of Well Simulation Results
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Model Calculated Pressure Depletion
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6) Simulator Predictions
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Optimal Case Long-Term Recovery

Hydraulic Fracture
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30-Year for Several 25 ft Intervals
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Challenge 1: Natural Fractures

There is evidence in the literature
Indicating that the natural
fractures are important. This
model can honor the historical
gas rate assuming no natural
fractures. This may be due to:

Underestimating the initial
water volume

Underestimating initial matrix
compaction

Overestimating the sand
connectivity

Overestimating permeability
between sand bodies

Depth (m)
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Norman R. Warpinski, and John C. Lorenz, 2008, “Analysis of the
Multiwell Experiment Data and Results: Implications for the Base-

centered Gas Model”




Challenge 2: Water Production

* This model assumes immobile
water. We believe that water has
minimal impact on gas productivity WGR_STBMMSCF (STB/MMSCF)
(i.e. water and gas flow through
separate pores or fractures). Thus
other than the impact on lift
efficiency we believe, that the long
term performance is reasonably
approximated. There are challenges
representing mobile water in these

10° |

10° |

(STB/MMSCF)

10" |

WGR_STBMMSCF

10°

systems: | | | |
 What is the water source (no Date (DATE)
large source to sustain water NE20_ weLL_warse
rate from low compressibility
water)

 How to allow for water flow
paths which will not become
permeable flow paths for gas




Summary

* An integrated approach has lead to realistic 3D geologic and
dynamic models which are consistent with static data and historical
performance.

« Such models are useful for estimating the impact of geologic
uncertainty on early and long-time performance including well
Interference

« Hydraulic fractures dominate early performance; however, there is
minimal data to constrain their properties leading to some non-
unigueness

« Future work will focus on calibration to different geologic modeling
approaches (i.e.:

« Sand distribution methods
« Impact of natural fractures

* Seismic constraints
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