Model Fracture Density, Orientation, Dispersion

iReservoir workflow and examples for estimating Natural Fractures from Seismic Data with application to Discrete (DFN) and Continuous (CFM) Fracture Network Modeling for Flow-Simulation

iReservoir uses a seismic based statistical methodology to estimate fracture orientation and dispersion for single dominate fracture sets and also for multiple fracture sets using seismically-calculated 3D structural attributes. The dispersion parameter, the circular variance, can be easily be associated with the Fisher coefficient, a key parameter in the probability density function used in discrete fracture network modeling (DFN) to stochastically constrain discrete fracture orientations. These same seismic apparent-fracture density and fracture set orientation grids can be used as fast-CFM fracture constraint input to flow simulation models before any DFN networks are created or finalized. These same seismic apparent-fracture property grids can be used stand-alone for high-grading exploration well locations.

Variability in Fracture Dispersion (Fisher Coefficient)

Examples of Fractured Shale Pavement Outcrops

From Local Orientations to Fisher Coefficient

Seismic Input for CFM or DFN Modeling

1. Calibrated apparent fracture density per family from structural attributes
2. Calibrated dominant apparent fracture orientation per family from local fault strikes
3. Fisher coefficient per fracture set family (fracture variance) from local faults strikes
4. Modeled fractures and seismic constraints
The iReservoir seismic fracture workflow is documented in URTeC paper 1581308 and The Leading Edge (Dec. 2013, 1502-1512) using seismic constrained DFN model examples for fractured flow simulations showing possible pressure implications for drainage of naturally fractured, unconventional reservoirs.

Stochastic: Discrete Fracture Network (DFN)

- **Excess Perm**
- **Golder’s Fracman or FRED**
- **Discrete Fracture Model (DFN model)**
- **Ant-Tracking**
- **Oda Upscaling**
 \((k_f, \phi_f, \sigma)\) for flow-sim
- **DFN used to create ECL Fracture Properties**
 for Dual Porosity or Dual Perm models

Deterministic: Continuous Fracture Network “Models” (CFM)

- **Excess Perm**
- **Perm Multiplier**
- **Natural Fracture Orientation/Intensity**
- **Total ECL Perm Multipliers**
 \((k_f, \phi_f, \sigma)\) to flow-sim

Attributes Mapped to Flow Simulation Grid

- **Fracture Properties (per family and type)**
 1) Sigma factor
 2) Frac Kx, Kx, Kz
 3) Distance to faults
 4) Fracture porosity

Flow Sim Results:

- **Pressure Field after 100 Days**